E8: Relying Party Reliance on Server-Based PKI Validation

Dr. Sarbari Gupta
President
Electrosoft Services
Email: sarbari@electrosoft-inc.com
Tel: (703)757-9096
Outline

- PKI Basics
- Certificate Trust Architectures
- PKI Path Processing – current practices and issues
- Server-based validation schemes
- Optimization of PKI Validation
Public Key Certificate

A digital document that binds an entity (name, id) to a specific public key. A trusted third party (certification authority) establishes the binding using a digital signature.
Public Key Infrastructure (PKI)

A digital infrastructure that provides the needed levels of confidence to users of a public key that the associated private key is owned by the correct subject (person or system).

A PKI also provides a means of:
- distributing public keys over an untrusted medium,
- providing revocation notification.
PKI Architectural Entities

Certification Authority
A trusted entity that:
• Verifies and vouches for the identity of subscribers
• Generates and signs Public Key Certificates
• Revokes Public Key Certificates
• Publishes Public Key Certificates and Certificate Revocation Lists in Directory Servers
• Operated under control of Security Officer(s)

Repository
Contains valid Public Key Certificates and Certificate Revocation Lists

Subscriber
A entity that:
• Generates asymmetric key pairs
• Requests public key certificates from CAs
• Receives issued certificates
• Uses private key in crypto operations

Relying Party
A entity that:
• Looks up peer certificates in Repository
• Validates peer certificates and certificate paths in order to establish trust in peer public key
• Uses peer public key in crypto operations

October 30, 2001
Certificate Path Validation

- Receiver *knows* and *trusts* the Root CA’s Public Key
- Receiver has the Sender’s Public Key certificate
- Receiver develops a chain of certificates beginning with a Root CA signed certificate and ending with the Sender’s certificate
Certificate Validation Process

- Certificate Path Discovery
- Basic Certificate Processing
- Certificate Extension Processing
 - Subject and Issuer Extensions
 - Key related Extensions
 - Policy Extensions
 - Path Constraints
- Revocation status checking
 - Revocation information collection
 - Revocation information processing
Certificate Trust Architectures

- Flat
- Hierarchical
- Networked with Cross-certification
- Bridge Certification Authority
- Certificate Trust Lists
- Relying party trusts public key belonging to well-known CA (trusted single root)
- Subscriber obtains certificate signed by well-known CA
- Relying party verifies subscriber certificate using trusted root key
Hierarchical

- A tree structure is formed by the Certificate Authorities
- Relying party trusts public key of CA at the top (Root CA)
- CAs issue certificate to subordinate CAs or to users
- Relying party verifies subscriber’s certificate along a certificate path leading to root
Networked with Cross-Certification

- A trust network is developed through the creation of cross certificate pairs
- Relying party trusts the public key of their local CA
- Subscriber may be certified by a remote CA
- Relying party builds a certification path leading from their local CA to the subscriber’s certificate
Two or more different public key infrastructures create cross-certificate pairs with a designated Bridge CA.

Relying parties trace certificate paths from their trusted CAs to subscribers in other infrastructures through the Bridge CA.
Relying party trusts public keys of multiple Root CAs
Relying party verifies subscriber’s certificate along a certificate path leading to any of the trust roots
State of the PKI Landscape

- Flat and hierarchical PKI architectures most prevalent
- Relying Party use of Certificate Trust Lists very common
- In most PKI applications, the Relying Party performs Certificate Validation and Processing
- For inter-organizational trust, Networked and Bridge CA architectures are proposed
Certificate Trust Path and Trust Model Hurdles

- Flat and Hierarchical trust models not applicable across organizational PKIs
- Trust lists on client systems difficult to administer and do not scale
- For large interconnected PKIs, the scalable options are networked and BCA trust models. However:
 - Certificate trust path discovery becomes non-trivial
 - Policy and Extension processing may become complex
 - Revocation information collection and processing is very burdensome
Server-Based PKI Validation

- Offload some or all of the PKI path processing to a shared server system
 - **Advantages:**
 - Better organizational control over PKI trust and policy processing
 - Lightweight, simple, Relying Party applications
 - Complex path development logic in server system – possible optimization
 - Complex revocation checking operation in server system – possible optimization
 - **Disadvantages:**
 - Relying party dependence on external system – may be slow if network is overloaded, less redundancy
 - Authenticating the server system may be difficult
 - Server system is a target for spoofing and denial-of-service attacks
Some Server-Based Validation Schemes

- Online Certificate Status Protocol
- Online Certificate Status Protocol v2
- Simple Certificate Validation Protocol (SCVP)
- Data Validation and Certification Server (DVCS)
Online Certificate Status Protocol (OCSP)

- Relying Party queries CA or OCSP Responder about the current validity of a certificate
- Relying party receives signed OCSP token indicating validity status of certificate

Scenarios of use:
- high value transactions
- for checking dynamic credentials (e.g., available credit)
OCSP Version 2

- Internet Draft published in March, 2001
- Work in progress – TBD sections
- Defines three service types:
 - **Online Revocation Status (ORS)** – provides timely information regarding revocation status
 - **Delegated Path Validation (DPV)** – delegates complex certificate path validation to a server system
 - **Delegated Path Discovery (DPD)** – delegates complex certificate path development to a server system
OCSP Version 2 Basic Request

- Basic Request
 - Service Identification
 - Sequence of Single Requests
 - Certificate Identification
 - Extensions (Optional)
 - DPV:
 - Policy set
 - Trusted root certificates
 - Revocation info
 - DPD:
 - Policy set
 - Trusted root certificates
 - What to return (policy, CRLs, OCSP, etc.)
 - Signature (Optional)
OCSP Version 2 Basic Response

- Basic Response
 - Response Status
 - ORS, DPV:
 - Response Type
 - Response Data
 - Responder ID
 - Time of Response
 - Sequence of Single Response
 - Certificate Identification
 - Certificate Status
 - Time Validity of status
 - Signature on Response Data
 - DPD:
 - Retry reference
 - Sequence of Certificates
 - Sequence of revocation info (CRL, OCSP)
Simple Certificate Validation Protocol (SCVP)

- Internet Draft issued July 2000
- Primary services
 - Return certificate validity status
 - Return full certificate path to trusted root
- Primary benefits
 - Allows offloading of certificate handling to server
 - Simplifies client implementations
 - Allows centralization of trust and policy management
SCVP Request

- **Basic Request**
 - **Query**
 - Sequence of queried certificates
 - Validity time
 - Intermediate certificates
 - Trusted certificates
 - Revocation info
 - Policy ID
 - **Types of check (OIDs)**
 - Certificate path to a trusted root
 - Validated certificate path to a trusted root
 - Revocation status check on certification path
 - **Want back (OIDs)**
 - Certification path
 - Proof of revocation status
SCVP Response

- Response (signed data structure)
 - Time of response
 - Response status
 - Request hash
 - Vector of reply objects
 - Certificate
 - Reply status
 - Validity period
 - Other info
 - Validation status
 - Cert subject
 - Reply extensions
 - Revocation status
 - Validation chain
 - Revocation proof
 - Public key
Data Validation and Certification Server (DVCS)

- Experimental RFC 3029 published 2/01
- Services Offered:
 - Certification of Possession of data
 - Certification of Claim of possession of data
 - Validation of Digitally signed document
 - Validation of Public key certificates
DVCS Request for Certificate Validation

- Service type (cert validation)
- Request time
- Sequence of Certificate Chains
 - Target certificate
 - Certificate paths
 - Acceptable policies
 - Policy processing flags
DVCS Response for Certificate Validation

- Request information
- Serial number
- Response time
- Response Status
- Sequence of Certificate Paths
Server-based Validation Schemes: Issues

- How to establish trust in the Validation Server
- Who operates Validation Server
 - Relying party organization
 - The Subscriber domain
- How to handle a validation request for multiple certificates issued by different CAs
- Does the protocol allow input of intermediate certificates and revocation info for a certificate chain
- How does the Validation Server perform and optimize the PKI Path processing steps
 - Path development
 - Revocation checking
Authenticating the Validation Server

Who is authorized to be a Validation Server for a certificate CERT?

- The CA that issued CERT
- An entity that has a certificate from the CA that issued CERT, with a special extendedKeyUsage extension
- An entity locally configured to be a trusted Validation Server for CERT

Of course, the revocation status of the Responder’s cert may also need to be checked!
Optimization Techniques

- Include partial paths whenever possible
- Move certificate path processing to server
- Optimization techniques for Server-based Schemes
 - PKI Path Crawlers
 - Server-to-server queries for
 - Path discovery
 - Revocation checking
 - Partial path validation
Thank You

Questions?

Contact:

Sarbari Gupta
Electrosoft Services
Tel: (703)757-9096
Email: sarbari@electrosoft-inc.com
Web: http://www.electrosoft-inc.com