Key Management Challenges

with Smart Grid and the Cloud

Dr. Sarbari Gupta

Electrosoft

Managing Cyber Risk Through Innovation and Engineering

February 26, 2013

Smart Grid and Cloud

- Smart Grid Functions moving to Cloud
 - Collection of Data from Meters/Sensors/Devices
 - Rapid Analysis of Big Data
 - Control and Management of Smart Grid Operations

- Why Cloud Computing for Smart Grid?
 - Supports "Elasticity" needed in Smart Grid Operations
 - Lower Cost and Rapid Deployment
 - Higher Availability and Reliability
 - Connects variety of Stakeholders through Standard Interfaces
 - Providers (Generators, Distributors, Utilities, etc.)
 - Users (Industrial, Commercial, Home, etc.)

Cloud Based Systems – Uncertainties

- Processor
 - Where is my process running?
 - Am I sharing the processor with other users/organizations?
- Data Storage
 - Where does my data reside?
 - Is my data co-resident with other users' data?
- Communication
 - How does my CSP know who I am?
 - How is my connection to cloud components protected?
- Administration
 - Who administers the Cloud Infrastructure?
 - Who has access to my data? My activity history?
- Key Management
 - Where and how are keys: Generated? Stored?
 - How are keys: Distributed? Protected? Recovered? Destroyed?

Cryptography Integral to Cloud

- Supports strong remote authentication
 - Regular users (1- or 2-factor)
 - Administrators (2-factor)
- Implements strong communication protocols
 - Between user (browser) and cloud (SSL/TLS)
- Partitions User data in co-tenancy environments
- Provides data confidentiality
 - From cloud administrators
 - From Cloud co-tenants
- Supports data integrity
 - Tamper-detection of critical data through MACs and digital signatures
- Strengthens Audit Log Management
 - Signed and time-stamped audit logs

Cryptographic Key Management

- Cryptographic Keys Core Functions
 - Confidentiality Protection
 - Integrity Protection
 - Source Authentication
- Key Management Scope
 - Key Generation
 - Key Storage
 - Key Distribution
 - Key Recovery

Use Case 1: Remote Authentication to Cloud

- Key Management from Cloud User's Perspective
 - Some Visibility
 - Assurance of standard protocols and TTP issued credentials
 - Some Control
 - User may select own Credential Provider, Configure Browser settings

Use Case 2: Secure Communication with Cloud

- Key Management from Cloud User's Perspective
 - Some Visibility
 - Assurance of standard protocols and TTP issued credentials
 - Some Control
 - User may configure browser settings

Use Case 3: Cloud Data Protection

- Key Management from Cloud User's Perspective
 - SaaS little or no visibility; little or no control
 - PaaS limited visibility; limited control
 - Iaas more visibility; more control

Wrap-Up and Contact Information

Summary

- Smart Grid and Cloud are a Natural Fit
- Cloud Computing presents unique security challenges
- Cryptography essential to secure cloud operations
- Sound Key Management Practices critical

Contact Information

- Dr. Sarbari Gupta Electrosoft
 - Email: sarbari@electrosoft-inc.com
 - Phone: 703-437-9451 ext. 12

